Human activity recognition plays an increasingly important role not only in our daily lives, but also in the medical and rehabilitation fields. The development of deep learning has also contributed to the advancement of human activity recognition, but the large amount of data annotation work required to train deep learning models is a major obstacle to the development of human activity recognition. Contrastive learning has started to be used in the field of sensor-based human activity recognition due to its ability to avoid the cost of labeling large datasets and its ability to better distinguish between sample representations of different instances. Among them, data augmentation, an important part of contrast learning, has a significant impact on model effectiveness, but current data augmentation methods do not perform too successfully in contrast learning frameworks for wearable sensor-based activity recognition. To optimize the effect of contrast learning models, in this paper, we investigate the sampling frequency of sensors and propose a resampling data augmentation method. In addition, we also propose a contrast learning framework based on human activity recognition and apply the resampling augmentation method to the data augmentation phase of contrast learning. The experimental results show that the resampling augmentation method outperforms supervised learning by 9.88% on UCI HAR and 7.69% on Motion Sensor in the fine-tuning evaluation of contrast learning with a small amount of labeled data, and also reveal that not all data augmentation methods will have positive effects in the contrast learning framework. Finally, we explored the influence of the combination of different augmentation methods on contrastive learning, and the experimental results showed that the effect of most combination augmentation methods was better than that of single augmentation.
翻译:人类活动的认知不仅在我们日常生活中,而且在医疗和康复领域发挥着越来越重要的作用。深层次学习的发展也促进了人类活动的认知,但培训深层学习模式所需的大量数据说明工作对于培养人类活动认知是一个重大障碍。在基于传感器的人类活动识别领域,已开始使用对比学习,因为其能够避免在大型数据集上贴标签的成本,以及它能够更好地区分不同实例的抽样表现。其中,数据增强(对比学习的一个重要部分)对模型有效性有重大影响,但当前数据增强方法在对比学习框架方面效果不甚成功,因为用于对耗损传感器活动认识的学习模式进行深层培训。为了优化对比学习模型的效果,我们在本文件中调查传感器的取样频率并提出重现数据增强方法。此外,我们还提议一个基于人类活动识别成本的对比学习框架,并在数据增强的单一学习阶段采用重现强化方法。实验结果显示,重塑增强能力方法比对可磨损的组合效果要大,在IMILLA和SALLIMA中,SALLAA的所有数据更新方法将显示,在SIRILA的升级学习中,在SENBRALAILA AS LIAL AL AL AL AL LIAL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL ALI AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL ALVAL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL AL