The Stein paradox has played an influential role in the field of high dimensional statistics. This result warns that the sample mean, classically regarded as the "usual estimator", may be suboptimal in high dimensions. The development of the James-Stein estimator, that addresses this paradox, has by now inspired a large literature on the theme of "shrinkage" in statistics. In this direction, we develop a James-Stein type estimator for the first principal component of a high dimension and low sample size data set. This estimator shrinks the usual estimator, an eigenvector of a sample covariance matrix under a spiked covariance model, and yields superior asymptotic guarantees. Our derivation draws a close connection to the original James-Stein formula so that the motivation and recipe for shrinkage is intuited in a natural way.
翻译:Stein 悖论在高维统计领域发挥了有影响力的作用。 这个结果警告说, 典型地被视为“ 惯用天体” 的样本在高维方面可能是次优的。 解决这一悖论的James- Stein spestator的开发, 现已激发了有关统计“ 缩小” 主题的大量文献。 在这个方向上, 我们为高维和低样本大小数据集的第一个主要组成部分开发了詹姆斯- Stein 类型天体测算仪。 这个测算仪压缩了常用的估测仪, 即一个在螺旋形共变换模型下的样本变异矩阵的静脉, 并产生了优于零位的保证。 我们的推导法与最初的詹姆斯- Stein 公式紧密相连, 从而使得缩缩的动力和配方自然地变得贴切合。