AI-assisted programming is rapidly reshaping software development, with large language models (LLMs) enabling new paradigms such as vibe coding and agentic coding. While prior works have focused on prompt design and code generation quality, the broader impact of LLM-driven development on the iterative dynamics of software engineering remains underexplored. In this paper, we conduct large-scale experiments on thousands of algorithmic programming tasks and hundreds of framework selection tasks to systematically investigate how AI-assisted programming interacts with the software ecosystem. Our analysis reveals \textbf{a striking Matthew effect: the more popular a programming language or framework, the higher the success rate of LLM-generated code}. The phenomenon suggests that AI systems may reinforce existing popularity hierarchies, accelerating convergence around dominant tools while hindering diversity and innovation. We provide a quantitative characterization of this effect and discuss its implications for the future evolution of programming ecosystems.
翻译:暂无翻译