Emotion stimulus extraction is a fine-grained subtask of emotion analysis that focuses on identifying the description of the cause behind an emotion expression from a text passage (e.g., in the sentence "I am happy that I passed my exam" the phrase "passed my exam" corresponds to the stimulus.). Previous work mainly focused on Mandarin and English, with no resources or models for German. We fill this research gap by developing a corpus of 2006 German news headlines annotated with emotions and 811 instances with annotations of stimulus phrases. Given that such corpus creation efforts are time-consuming and expensive, we additionally work on an approach for projecting the existing English GoodNewsEveryone (GNE) corpus to a machine-translated German version. We compare the performance of a conditional random field (CRF) model (trained monolingually on German and cross-lingually via projection) with a multilingual XLM-RoBERTa (XLM-R) model. Our results show that training with the German corpus achieves higher F1 scores than projection. Experiments with XLM-R outperform their respective CRF counterparts.
翻译:情感刺激的提取是一种细微的情感分析的子任务,重点是从一段文字(例如,在“我很高兴我通过了考试”的句子中,“通过我的考试”与刺激相对应。 )过去的工作主要侧重于普通话和英语,没有德国语的资源或模式。我们开发了一部2006年德国新闻头条,用情感附加说明,811例带有刺激词说明,从而填补了这一研究空白。鉴于这种物质创建工作耗时且昂贵,我们还努力研究一种方法,将现有的英语好新闻(GNE)的功能投射到机器翻译的德国版本中。我们把一个有条件随机字段模型(CRF)的性能(用德语单语培训,用德语和跨语言进行预测)与一个多语言的 XLM-ROBERTA(XLM-R) 模型进行比较。我们的结果显示,与德国实体的培训比预测高F1分。XLM-Reperforate the 各自的通用报告格式对等。