We prove a simple, nearly tight lower bound on the approximate degree of the two-level $\mathsf{AND}$-$\mathsf{OR}$ tree using symmetrization arguments. Specifically, we show that $\widetilde{\mathrm{deg}}(\mathsf{AND}_m \circ \mathsf{OR}_n) = \widetilde{\Omega}(\sqrt{mn})$. We prove this lower bound via reduction to the $\mathsf{OR}$ function through a series of symmetrization steps, in contrast to most other proofs that involve formulating approximate degree as a linear program [BT13, She13, BDBGK18]. Our proof also demonstrates the power of a symmetrization technique involving Laurent polynomials (polynomials with negative exponents) that was previously introduced by Aaronson, Kothari, Kretschmer, and Thaler [AKKT19].
翻译:本文使用对称化方法证明了关于两层AND-OR树的近似程度的一个简单、几乎是紧密的下界。具体而言,我们通过一系列对称化步骤将其降至OR函数,并证明证明了$\widetilde{\mathrm{deg}}(\mathsf{AND}_m \circ \mathsf{OR}_n) = \widetilde{\Omega}(\sqrt{mn})$。与大多数其他通过将近似程度公式化为线性规划[BT13、She13、BDBGK18]的证明不同,我们的证明通过对称化步骤展示了用Laurent多项式(指具有负指数的多项式)的对称化技术的威力,该技术曾由Aaronson、Kothari、Kretschmer和Thaler[AKKT19]提出。