This paper studies Makespan Minimization in the secretary model. Formally, jobs, specified by their processing times, are presented in a uniformly random order. An online algorithm has to assign each job permanently and irrevocably to one of m parallel and identical machines such that the expected time it takes to process them all, the makespan, is minimized. We give two deterministic algorithms. First, a straightforward adaptation of the semi-online strategy LightLoad provides a very simple algorithm retaining its competitive ratio of 1.75. A new and sophisticated algorithm is 1.535-competitive. These competitive ratios are not only obtained in expectation but, in fact, for all but a very tiny fraction of job orders. Classically, online makespan minimization only considers the worst-case order. Here, no competitive ratio below 1.885 for deterministic algorithms and 1.581 using randomization is possible. The best randomized algorithm so far is 1.916-competitive. Our results show that classical worst-case orders are quite rare and pessimistic for many applications. They also demonstrate the power of randomization when compared to much stronger deterministic reordering models. We complement our results by providing first lower bounds. A competitive ratio obtained on nearly all possible job orders must be at least 1.257. This implies a lower bound of 1.043 for both deterministic and randomized algorithms in the general model.


翻译:纸质研究在秘书模型中实现了最小化。 形式上, 由处理时间指定的工作, 以统一的随机顺序显示。 在线算法必须永久和不可撤销地将每份工作指派给一个平行和完全相同的机器, 以便尽可能缩短处理它们所需的时间。 我们给出了两种确定式算法。 首先, 直接调整半在线战略 LightLoad 提供了一种非常简单的算法, 保留其1. 75 的竞争性比率。 一个新的和尖端的算法具有1.535的竞争力。 这些竞争性比率不仅在预期中获得, 事实上, 对所有工作订单来说, 这些竞争性比率非常小。 典型的在线最小化只考虑最坏的顺序。 在这里, 确定性算法没有低于1.885的竞争性比率, 使用随机化的1.581 。 目前, 最佳随机化的算法是1. 916 具有竞争力。 我们的结果表明, 典型的最坏的算法非常罕见和悲观的算法对于许多应用来说都是非常罕见的。 它们也显示了随机化的力量, 与较强的确定性重的重新排序模型相比, 事实上, 也是非常小的一部分。 典型的最小的最小的最小的最小的最小的最小的排序。 我们的排序必须以最低的排序法 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月28日
Arxiv
0+阅读 · 2021年12月26日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员