In this paper, we propose and analyze algorithms for zeroth-order optimization of non-convex composite objectives, focusing on reducing the complexity dependence on dimensionality. This is achieved by exploiting the low dimensional structure of the decision set using the stochastic mirror descent method with an entropy alike function, which performs gradient descent in the space equipped with the maximum norm. To improve the gradient estimation, we replace the classic Gaussian smoothing method with a sampling method based on the Rademacher distribution and show that the mini-batch method copes with the non-Euclidean geometry. To avoid tuning hyperparameters, we analyze the adaptive stepsizes for the general stochastic mirror descent and show that the adaptive version of the proposed algorithm converges without requiring prior knowledge about the problem.
翻译:在本文中,我们提出并分析非碳氢化合物复合目标零级优化的算法,重点是减少对维度的复杂依赖性。这是通过利用使用随机镜底下沉法的低维结构实现的,该结构使用一个功能相似的恒星镜下沉法,该函数在配备了最大规范的空间中可产生梯度下降。为了改进梯度估计,我们用基于Rademacher分布的抽样方法取代经典高斯平滑法,并表明微型批量法可以应付非欧洲立方体的几何法。为避免调整超光谱,我们分析了用于一般随机镜下沉的适应步骤,并表明拟议算法的适应性版本在不需要事先了解这一问题的情况下会汇合在一起。