This paper presents the first step in a research project situated within the field of musical agents. The objective is to achieve, through training, the tuning of the desired musical relationship between a live musical input and a real-time generated musical output, through the curation of a database of separated tracks. We propose an architecture integrating a symbolic decision module capable of learning and exploiting musical relationships from such musical corpus. We detail an offline implementation of this architecture employing Transformers as the decision module, associated with a perception module based on Wav2Vec 2.0, and concatenative synthesis as audio renderer. We present a quantitative evaluation of the decision module's ability to reproduce learned relationships extracted during training. We demonstrate that our decision module can predict a coherent track B when conditioned by its corresponding ''guide'' track A, based on a corpus of paired tracks (A, B).
翻译:暂无翻译