The problems of causality, modeling, and control for chaotic, high-dimensional dynamical systems are formulated in the language of information theory. The central quantity of interest is the Shannon entropy, which measures the amount of information in the states of the system. Within this framework, causality is quantified by the information flux among the variables of interest in the dynamical system. Reduced-order modeling is posed as a problem related to the conservation of information in which models aim at preserving the maximum amount of relevant information from the original system. Similarly, control theory is cast in information-theoretic terms by envisioning the tandem sensor-actuator as a device reducing the unknown information of the state to be controlled. The new formulation is used to address three problems about the causality, modeling, and control of turbulence, which stands as a primary example of a chaotic, high-dimensional dynamical system. The applications include the causality of the energy transfer in the turbulent cascade, subgrid-scale modeling for large-eddy simulation, and flow control for drag reduction in wall-bounded turbulence.


翻译:在信息理论的语言中,对混乱、高维动态系统的因果关系、建模和控制问题以信息理论的语言来制定。关注的中心数量是香农星,它测量系统状态中的信息量。在这个框架内,因果关系通过动态系统中感兴趣的变量之间的信息通量加以量化。减少顺序建模是一个与保护信息有关的问题,其中模型旨在保存原系统的最大数量相关信息。同样,控制理论也体现在信息理论中,将同步传感器动能器设想为减少受控制国家未知信息的一种装置。新的配方用于解决关于动荡的因果关系、建模和控制的三个问题,这些问题是混乱、高维度动态系统的主要例子。应用包括动荡级联流中能源转移的因果关系、大型辐射模拟的亚磁级建模,以及拖动墙壁外扰动的流量控制。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月18日
Arxiv
0+阅读 · 2022年7月17日
Arxiv
0+阅读 · 2022年7月14日
Arxiv
22+阅读 · 2021年12月19日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员