Coloured graphical models are Gaussian statistical models determined by an undirected coloured graph. These models can be described by linear spaces of symmetric matrices. We outline a relationship between the symmetries of the graph and the linear forms that vanish on the reciprocal variety of the model. In particular, we give four families for which such linear forms are completely described by symmetries.


翻译:彩色图形模型是指由非定向彩色图形确定的高斯统计模型。这些模型可以用对称矩阵的线性空格来描述。我们概述了图形的对称和在模型的对等形式上消失的线性形式之间的关系。特别是,我们给出了四个家庭,这些线性形式完全用对称来描述。

0
下载
关闭预览

相关内容

《图形模型》是国际公认的高评价的顶级期刊,专注于图形模型的创建、几何处理、动画和可视化,以及它们在工程、科学、文化和娱乐方面的应用。GMOD为其读者提供了经过彻底审查和精心挑选的论文,这些论文传播令人兴奋的创新,传授严谨的理论基础,提出健壮和有效的解决方案,或描述各种主题中的雄心勃勃的系统或应用程序。 官网地址:http://dblp.uni-trier.de/db/journals/cvgip/
专知会员服务
29+阅读 · 2021年8月2日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
53+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
一文理解Ranking Loss/Margin Loss/Triplet Loss
极市平台
16+阅读 · 2020年8月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月22日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月18日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
5+阅读 · 2020年12月10日
Arxiv
6+阅读 · 2018年11月29日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年8月2日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
53+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
一文理解Ranking Loss/Margin Loss/Triplet Loss
极市平台
16+阅读 · 2020年8月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年11月22日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
0+阅读 · 2021年11月18日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
5+阅读 · 2020年12月10日
Arxiv
6+阅读 · 2018年11月29日
Arxiv
5+阅读 · 2018年5月31日
Top
微信扫码咨询专知VIP会员