Higher-dimensional rewriting systems are tools to analyse the structure of formally reducing terms to normal forms, as well as comparing the different reduction paths that lead to those normal forms. This higher structure can be captured by finding a homotopy basis for the rewriting system. We show that the basic notions of confluence and wellfoundedness are sufficient to recursively build such a homotopy basis, with a construction reminiscent of an argument by Craig C. Squier. We then go on to translate this construction to the setting of homotopy type theory, where managing equalities between paths is important in order to construct functions which are coherent with respect to higher dimensions. Eventually, we apply the result to approximate a series of open questions in homotopy type theory, such as the characterisation of the homotopy groups of the free group on a set and the pushout of 1-types. This paper expands on our previous conference contribution "Coherence via Wellfoundedness" (arXiv:2001.07655) by laying out the construction in the language of higher-dimensional rewriting.
翻译:高维重写系统是分析将条件正式降低到正常形式的结构的工具,以及比较导致这些正常形式的不同削减路径的工具。 可以通过为重写系统找到一个同质基础来捕捉这一更高的结构。 我们表明,汇合和有充分根据的基本概念足以反复构建这样一个同质基础, 其构建可以追溯Craig C. Squier的论点。 我们接着将这一构建转化为同质类型理论的设置, 其中管理路径之间的平等对于构建与更高层面一致的功能非常重要。 最后, 我们将结果应用到同质类型理论中一系列的开放问题, 比如将自由组的同质组在一组上的特性和推出1型。 本文扩展了我们以前的会议贡献, “ 通过有理论的团结” (arXiv: 2001. 07655), 通过在高维重写语言的构建, 来扩展我们以前的会议贡献(arXiv: 2001. 07655 ) 。