We study the distribution of the unobserved states of two measure-valued diffusions of Fleming-Viot and Dawson-Watanabe type, conditional on observations from the underlying populations collected at past, present and future times. If seen as nonparametric hidden Markov models, this amounts to finding the smoothing distributions of these processes, which we show can be explicitly described in recursive form as finite mixtures of laws of Dirichlet and gamma random measures respectively. We characterize the time-dependent weights of these mixtures, accounting for potentially different time intervals between data collection times, and fully describe the implications of assuming a discrete or a nonatomic distribution for the underlying process that drives mutations. In particular, we show that with a non atomic mutation offspring distribution, the inference automatically upweights mixture components that carry, as atoms, observed types shared at different collection times. The predictive distributions for further samples from the population conditional on the data are also identified and shown to be mixtures of generalized Polya urns, conditionally on a latent variable in the Dawson-Watanabe case.
翻译:我们研究Fleming-Viot和Dawson-Watanabe两种量值散射的未观测状态的分布情况,但以过去、现在和将来收集的基本人群的观察为条件。如果认为这些过程是非对数隐藏的Markov模型,这等于寻找这些过程的平滑分布,我们可以以递现形式分别明确描述为Drichlet定律和伽马随机测量法定律的有限混合物。我们将这些混合物的受时间限制的重量定性,考虑到数据收集时间之间的可能不同间隔,并充分描述假设离散或非原子分布对驱动突变的基本过程的影响。我们特别表明,在非原子变种后代分布的情况下,推断自动增加混合物成分,这些成分在不同的收集时间里带有观察到的种类。还查明并显示,以数据为条件的人群进一步样本的预测分布是普通聚氨的混合物,条件是道尔-Watabe案的潜在变体。