Finding good solutions for Multi-objective Optimization (MOPs) Problems is considered a hard problem, especially when considering MOPs with constraints. Thus, most of the works in the context of MOPs do not explore in-depth how different constraints affect the performance of MOP solvers. Here, we focus on exploring the effects of different Constraint Handling Techniques (CHTs) on MOEA/D, a commonly used MOP solver when solving complex real-world MOPs. Moreover, we introduce a simple and effective CHT focusing on the exploration of the decision space, the Three Stage Penalty. We explore each of these CHTs in MOEA/D on two simulated MOPs and six analytic MOPs (eight in total). The results of this work indicate that while the best CHT is problem-dependent, our new proposed Three Stage Penalty achieves competitive results and remarkable performance in terms of hypervolume values in the hard simulated car design MOP.
翻译:多目标优化问题寻找好解决办法被认为是一个棘手的问题,特别是在考虑有限制的《议定书》/《公约》时尤其如此,因此,在《议定书》/《公约》范围内,大多数工作都没有深入探讨不同制约因素如何影响《议定书》/《公约》解决者的业绩。这里,我们着重探讨不同的严格处理技术对MOEA/D的影响,MOEA/D是解决复杂的现实世界《议定书》/《公约》时常用的《议定书》/《公约》解决者。此外,我们引入了一个简单而有效的《公约》/《公约》,重点是探索决定空间,即三阶段惩罚。我们在MOEA/《议定书》/《公约》中就两个模拟的《议定书》/《公约》缔约方会议和六个分析性《议定书》/《公约》(共八个)逐一进行探讨。这项工作的结果表明,尽管最佳的《公约》/《公约》取决于问题,但我们提出的新的《三阶段惩罚》在硬模拟的汽车设计中取得了竞争性的结果和超量值的显著表现。