Edge Computing exploits computational capabilities deployed at the very edge of the network to support applications with low latency requirements. Such capabilities can reside in small embedded devices that integrate dedicated hardware -- e.g., a GPU -- in a low cost package. But these devices have limited computing capabilities compared to standard server grade equipment. When deploying an Edge Computing based application, understanding whether the available hardware can meet target requirements is key in meeting the expected performance. In this paper, we study the feasibility of deploying Augmented Reality applications using Embedded Edge Devices (EEDs). We compare such deployment approach to one exploiting a standard dedicated server grade machine. Starting from an empirical evaluation of the capabilities of these devices, we propose a simple theoretical model to compare the performance of the two approaches. We then validate such model with NS-3 simulations and study their feasibility. Our results show that there is no one-fits-all solution. If we need to deploy high responsiveness applications, we need a centralized server grade architecture and we can in any case only support very few users. The centralized architecture fails to serve a larger number of users, even when low to mid responsiveness is required. In this case, we need to resort instead to a distributed deployment based on EEDs.


翻译:电磁计算利用在网络边缘部署的计算能力来支持低潜值要求的应用。 这种能力可以存在于小型嵌入装置中,这些装置将专用硬件(例如GPU)整合成一个低成本的软件包中。 但是这些装置的计算能力与标准服务器级设备相比有限。 当部署以边缘计算机为基础的应用程序时,了解现有硬件能否满足目标要求是达到预期性能的关键。 在本文件中,我们研究利用嵌入式边缘设备(EEEDs)部署增强现实应用的可行性。 我们比较了这种部署方法与一个利用标准服务器专用级机器的小型嵌入装置。 从对这些装置能力的实验性评估开始,我们提出了一个简单的理论模型来比较两种方法的性能。 然后我们用NS-3模拟来验证这种模型并研究其可行性。 我们的结果表明,没有一刀切的解决方案。 如果我们需要部署高反应性能应用程序, 我们需要一个中央服务器级架构,我们无论如何只能支持极少数用户。 我们中央架构无法为更多用户服务, 即使低到中度反应度的ED型部署, 也需要向ED 分布。

0
下载
关闭预览

相关内容

Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员