In recent years, a number of approaches based on 2D CNNs and 3D CNNs have emerged for video action recognition, achieving state-of-the-art results on several large-scale benchmark datasets. In this paper, we carry out an in-depth comparative analysis to better understand the differences between these approaches and the progress made by them. To this end, we develop a unified framework for both 2D-CNN and 3D-CNN action models, which enables us to remove bells and whistles and provides a common ground for a fair comparison. We then conduct an effort towards a large-scale analysis involving over 300 action recognition models. Our comprehensive analysis reveals that a) a significant leap is made in efficiency for action recognition, but not in accuracy; b) 2D-CNN and 3D-CNN models behave similarly in terms of spatio-temporal representation abilities and transferability. Our analysis also shows that recent action models seem to be able to learn data-dependent temporality flexibly as needed. Our codes and models are available on https://github.com/IBM/action-recognition-pytorch.


翻译:近年来,在2D-CNN和3D-CNN行动模式的基础上,出现了一些基于2DCNN和3D-CNN的视频行动识别方法,在几个大型基准数据集中取得了最新的最新结果,我们在本文件中进行了深入的比较分析,以更好地了解这些方法之间的差异及其取得的进展。为此,我们为2D-CNN和3D-CNN行动模式制定了一个统一框架,使我们能够去除钟声和哨声,并为公平比较提供一个共同基础。然后,我们努力进行涉及300多个行动识别模型的大规模分析。我们的全面分析表明,a)在行动识别效率方面有很大的飞跃,但没有准确性;b) 2D-CNN和3D-CNN模式在空间代表能力和可转移性方面表现相似。我们的分析还表明,最近的行动模型似乎能够根据需要学习依赖数据的耐用时间性。我们的代码和模型可在https://github.com/IBM/action-science-pytorch查阅。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
53+阅读 · 2019年12月22日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
SlowFast Networks for Video Recognition
Arxiv
4+阅读 · 2019年4月18日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关资讯
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员