Active sensing and planning in unknown, cluttered environments is an open challenge for robots intending to provide home service, search and rescue, narrow-passage inspection, and medical assistance. Although many active sensing methods exist, they often consider open spaces, assume known settings, or mostly do not generalize to real-world scenarios. We present the active neural sensing approach that generates the kinematically feasible viewpoint sequences for the robot manipulator with an in-hand camera to gather the minimum number of observations needed to reconstruct the underlying environment. Our framework actively collects the visual RGBD observations, aggregates them into scene representation, and performs object shape inference to avoid unnecessary robot interactions with the environment. We train our approach on synthetic data with domain randomization and demonstrate its successful execution via sim-to-real transfer in reconstructing narrow, covered, real-world cabinet environments cluttered with unknown objects. The natural cabinet scenarios impose significant challenges for robot motion and scene reconstruction due to surrounding obstacles and low ambient lighting conditions. However, despite unfavorable settings, our method exhibits high performance compared to its baselines in terms of various environment reconstruction metrics, including planning speed, the number of viewpoints, and overall scene coverage.
翻译:虽然存在许多主动遥感方法,但它们往往考虑开放空间,假设已知环境,或大多不与现实世界情景相容。我们展示了活跃的神经遥感方法,为机器人操纵者创造动态可行的视觉序列,并配有一台手持相机,以收集重建基本环境所需的最低观测次数。我们的框架积极收集视觉RGBD观测,将其汇总到现场代表中,并进行物体形状推断以避免不必要的机器人与环境的不必要互动。我们用域随机化来培训合成数据的方法,并通过模拟到真实的转移来展示其成功执行,以重建狭窄、覆盖、真实世界的内阁环境,将未知物体包围在其中。自然的内阁情景对机器人运动和场面重建提出了重大挑战,因为周围障碍和低温的周围照明条件。然而,尽管环境不稳定,我们的方法在各种环境重建基准方面表现出很高的性能,包括规划总体速度、观点和基准。