In this paper, we discuss application of iterative Stochastic Optimization routines to the problem of sparse signal recovery from noisy observation. Using Stochastic Mirror Descent algorithm as a building block, we develop a multistage procedure for recovery of sparse solutions to Stochastic Optimization problem under assumption of smoothness and quadratic minoration on the expected objective. An interesting feature of the proposed algorithm is linear convergence of the approximate solution during the preliminary phase of the routine when the component of stochastic error in the gradient observation which is due to bad initial approximation of the optimal solution is larger than the "ideal" asymptotic error component owing to observation noise "at the optimal solution." We also show how one can straightforwardly enhance reliability of the corresponding solution by using Median-of-Means like techniques. We illustrate the performance of the proposed algorithms in application to classical problems of recovery of sparse and low rank signals in linear regression framework. We show, under rather weak assumption on the regressor and noise distributions, how they lead to parameter estimates which obey (up to factors which are logarithmic in problem dimension and confidence level) the best known to us accuracy bounds.


翻译:在本文中,我们讨论了迭代Stochastic优化常规应用对于从噪音观测中微弱恢复信号的问题。用Stochastic镜源算法作为构件,我们开发了一个多阶段程序,在假定平稳和对预期目标的四面形微小假设下,恢复对Stochastic优化问题的微弱解决方案。提议的算法的一个有趣的特点是,在平滑和对预期目标的四面形微小的假设下,在平滑观察的初始阶段,由于对最佳解决方案最初偏差部分的误差部分的最初误差大于 " 理想的 " 无症状误差部分的 " 。我们还展示了如何通过使用像技术一样的Memedia-means这样的直接提高相应解决方案的可靠性。我们展示了拟议的算法在应用于线性回归框架中稀疏和低级信号的典型问题时的表现。在对递减和噪音分布的假设相当薄弱的情况下,我们展示了它们如何导致符合(在问题层面和信任水平上具有对论性的因素)的参数估计。我们所知道的最佳精确度。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员