We introduce a robust and efficient preconditioner for a hybrid Newton-GMRES method for solving the nonlinear systems arising from incompressible Navier-Stokes equations. When the Reynolds number is relatively high, these systems often involve millions of degrees of freedom (DOFs), and the nonlinear systems are difficult to converge, partially due to the strong asymmetry of the system and the saddle-point structure. In this work, we propose to alleviate these issues by leveraging a multilevel ILU preconditioner called HILUCSI, which is particularly effective for saddle-point problems and can enable robust and rapid convergence of the inner iterations in Newton-GMRES. We further use Oseen iterations to hot-start Newton-GMRES to achieve global convergence, also preconditioned using HILUCSI. To further improve efficiency and robustness, we use the Oseen operators as physics-based sparsifiers when building preconditioners for Newton iterations and introduce adaptive refactorization and iterative refinement in HILUCSI. We refer to the resulting preconditioned hybrid Newton-GMRES as HILUNG. We demonstrate the effectiveness of HILUNG by solving the standard 2D driven-cavity problem with Re 5000 and a 3D flow-over-cylinder problem with low viscosity. We compare HILUNG with some state-of-the-art customized preconditioners for INS, including two variants of augmented Lagrangian preconditioners and two physics-based preconditioners, as well as some general-purpose approximate-factorization techniques. Our comparison shows that HILUNG is much more robust for solving high-Re problems and it is also more efficient in both memory and runtime for moderate-Re problems.
翻译:我们为牛顿- GMRES混合混合方法引入一个强大而高效的前提条件。 当Reynolds数量相对较高时,这些系统往往涉及数百万度的自由(DOFs),而非线性系统则难以汇合,部分原因是该系统和马鞍结构的高度不对称性。在这项工作中,我们提议通过利用名为HILUSI的多级ILU中度先决条件来缓解这些问题,这对于搭配点问题特别有效,并且能够使牛顿-GMRES的内部迭接合快速和稳健。当新顿-GMRES的直径比较中,我们进一步使用热启动的纽顿-GMRES的迭代,以实现全球趋同,同时使用HILUSI的前提条件,我们使用Osion操作者作为基于物理学的保温器,同时在HINSLUSI中引入适应性再适应性调整和迭代改进性调整性,作为HIL-D的两次硬性交替性硬性交替性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性