Weighted automata are a generalization of nondeterministic automata that associate a weight drawn from a semiring $K$ with every transition and every state. Their behaviours can be formalized either as weighted language equivalence or weighted bisimulation. In this paper we explore the properties of weighted automata in the framework of coalgebras over (i) the category $\mathsf{SMod}$ of semimodules over a semiring $K$ and $K$-linear maps, and (ii) the category $\mathsf{Set}$ of sets and maps. We show that the behavioural equivalences defined by the corresponding final coalgebras in these two cases characterize weighted language equivalence and weighted bisimulation, respectively. These results extend earlier work by Bonchi et al. using the category $\mathsf{Vect}$ of vector spaces and linear maps as the underlying model for weighted automata with weights drawn from a field $K$. The key step in our work is generalizing the notions of linear relations and linear bisimulations of Boreale from vector spaces to semimodules using the concept of the kernel of a $K$-linear map in the sense of universal algebra. We also provide an abstract procedure for forward partition refinement for computing weighted language equivalence. Since for weighted automata defined over semirings the problem is undecidable in general, it is guaranteed to halt only in special cases. Although the results are similar to those of Bonchi et al, many of our proofs are new, especially for the coalgebra in $\mathsf{SMod}$ characterizing weighted language equivalence.


翻译:加权自动数据是非确定性的自动数据的一般化, 它将从半K美元中抽取的重量与每个过渡阶段和每个状态的美元联系起来。 它们的行为可以正式化为加权语言等值或加权刺激。 在本文中, 我们探索了在以下( i) 的煤层框架范围内加权自动数据的性质:( ) 载量空间和线性地图中的半模量值类别$mathsfsf{Smod}, 以半K美元和美元线性地图为基础, 以及 (ii) 将每件和每份地图的半K美元计算。 我们的工作的关键步骤是, 在这两个案例中, 相应的最终煤层对等值定义的行为等值分别是加权语言等等等值和加权刺激。 这些结果延续了Bonchi 等人先前的工作, 使用 $\ mathfsf{Vect} 和 线性地图的类别作为加权的顶级数据模型, 其重量取自字段的重量值, $K 。 。 我们工作的关键步骤是, 我们的工作是将特定的线性关系概念和直线性对等值的基平等值 。

0
下载
关闭预览

相关内容

专知会员服务
212+阅读 · 2021年8月2日
【经典书】主动学习理论,226页pdf,Theory of Active Learning
专知会员服务
125+阅读 · 2021年7月14日
专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
17+阅读 · 2020年9月6日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
39+阅读 · 2020年3月25日
专知会员服务
60+阅读 · 2020年3月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年4月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年10月21日
Arxiv
0+阅读 · 2021年10月20日
VIP会员
相关VIP内容
专知会员服务
212+阅读 · 2021年8月2日
【经典书】主动学习理论,226页pdf,Theory of Active Learning
专知会员服务
125+阅读 · 2021年7月14日
专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
17+阅读 · 2020年9月6日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
39+阅读 · 2020年3月25日
专知会员服务
60+阅读 · 2020年3月19日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年4月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员