We propose a family of mixed finite element that is robust for the nearly incompressible strain gradient model, which is a fourth order singular perturbation elliptic system. The element is similar to the Taylor-Hood element in the Stokes flow. Using a uniform stable Fortin operator for the mixed finite element pairs, we are able to prove the optimal rate of convergence that is robust in the incompressible limit. Moreover, we estimate the convergence rate of the numerical solution to the unperturbed second order elliptic system. Numerical results for both smooth solutions and the solutions with sharp layers confirm the theoretical prediction.
翻译:我们提出一个混合限量元素的组合,对于几乎可以压缩的菌株梯度模型来说是稳健的,这是第四顺序的奇异扰动椭圆形系统。元素与斯托克斯流中的泰勒-胡德元素相似。我们使用一个统一的、稳定的堡垒操作员来操作混合限量元素配对,能够证明在不可压缩极限中最稳健的最佳趋同率。此外,我们估算了未扰动的第二顺序椭圆形系统的数字解决方案的趋同率。光滑解决方案和有尖锐层的解决方案的数值结果证实了理论预测。