In this paper, we propose a method for selecting the optimal footholds for legged systems. The goal of the proposed method is to find the best foothold for the swing leg on a local elevation map. We apply the Convolutional Neural Network to learn the relationship between the local elevation map and the quality of potential footholds. The proposed network evaluates the geometrical characteristics of each cell on the elevation map, checks kinematic constraints and collisions. During execution time, the controller obtains the qualitative measurement of each potential foothold from the neural model. This method allows to evaluate hundreds of potential footholds and check multiple constraints in a single step which takes 10~ms on a standard computer without GPGPU. The experiments were carried out on a quadruped robot walking over rough terrain in both simulation and real robotic platforms.
翻译:在本文中,我们提出了为腿系系统选择最佳立足点的方法。 提议的方法的目标是在本地高地地图上找到摇摆腿的最佳立足点。 我们运用进化神经网络学习本地高地地图与潜在立足点质量之间的关系。 拟议的网络评估了高地地图上每个单元格的几何特征, 检查运动障碍和碰撞。 执行期间, 控制器从神经模型中获取对每个潜在立足点的定性测量。 这个方法允许对数百个潜在立足点进行评估, 并检查单步的多重限制, 单步需要10米的计算机没有GPGPPU。 实验是在模拟和真正的机器人平台上跨过粗野地形的四重机器人进行的。