Physics-informed neural networks (PINNs) have become a popular choice for solving high-dimensional partial differential equations (PDEs) due to their excellent approximation power and generalization ability. Recently, Extended PINNs (XPINNs) based on domain decomposition methods have attracted considerable attention due to their effectiveness in modeling multiscale and multiphysics problems and their parallelization. However, theoretical understanding on their convergence and generalization properties remains unexplored. In this study, we take an initial step towards understanding how and when XPINNs outperform PINNs. Specifically, for general multi-layer PINNs and XPINNs, we first provide a prior generalization bound via the complexity of the target functions in the PDE problem, and a posterior generalization bound via the posterior matrix norms of the networks after optimization. Moreover, based on our bounds, we analyze the conditions under which XPINNs improve generalization. Concretely, our theory shows that the key building block of XPINN, namely the domain decomposition, introduces a tradeoff for generalization. On the one hand, XPINNs decompose the complex PDE solution into several simple parts, which decreases the complexity needed to learn each part and boosts generalization. On the other hand, decomposition leads to less training data being available in each subdomain, and hence such model is typically prone to overfitting and may become less generalizable. Empirically, we choose five PDEs to show when XPINNs perform better than, similar to, or worse than PINNs, hence demonstrating and justifying our new theory.


翻译:物理知情神经网络(PINNs)因其极好的近似功率和一般化能力而成为解决高维部分偏差方程式(PDEs)的流行选择。最近,基于域分解方法的扩展 PINNs(XPINNs)因其在模拟多规模和多物理问题及其平行化方面的功效而引起相当的关注。然而,关于这些网络的趋同和一般化特性的理论理解仍未得到探讨。在本研究中,我们迈出了第一步,以了解 XPINNs如何和何时超越PINNs。具体地说,对于一般多层 PINNs和XPINNNSs来说,我们首先通过PDE问题目标功能的复杂程度来提供先前的概括化,而对于在优化后的网络的成形矩阵规范加以约束。此外,根据我们的界限,我们分析XPINNN的模型改进总体化的条件。具体地说,我们的理论表明,XPINNN(即域分解)的关键建筑块,在一般化方面显示一些贸易的走向一般化,因此一般的推算算算得更低。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月13日
Arxiv
7+阅读 · 2021年5月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员