With the widespread use of mobile phones, users can share their location anytime, anywhere, as a form of check-in data. These data reflect user preferences. Furthermore, the preference rules for different users vary. How to discover a user's preference from their related information and how to validate whether a preference model is suited to a user is important for providing a suitable service to the user. This study provides four main contributions. First, multiple preference models from different views for each user are constructed. Second, an algorithm is proposed to validate whether a preference model is applicable to the user by calculating the stability value of the user's long-term check-in data for each model. Third, a unified model, i.e., a multi-channel convolutional neural network is used to characterize this applicability. Finally, three datasets from multiple sources are used to verify the validity of the method, the results of which show the effectiveness of the method.


翻译:随着移动电话的广泛使用,用户可以随时随地、任何地方分享其位置,作为报到数据的一种形式。这些数据反映了用户的偏好。此外,不同用户的偏好规则各有不同。如何发现用户偏好于其相关信息,以及如何验证偏好模式是否适合用户,对于向用户提供适当服务十分重要。本研究提供了四大贡献。首先,根据对每个用户的不同观点构建了多种偏好模式。第二,提出算法,通过计算用户对每种模型的长期登入数据的稳定性值来验证偏好模式是否适用于用户。第三,使用一个统一的模型,即多通道神经网络来描述这一适用性。最后,使用三个来自多个来源的数据集来验证方法的有效性,其结果显示了方法的有效性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
注意力机制综述
专知会员服务
205+阅读 · 2021年1月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【电子书推荐】Data Science with Python and Dask
专知会员服务
44+阅读 · 2019年6月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
6+阅读 · 2018年3月28日
Top
微信扫码咨询专知VIP会员