With the widespread use of mobile phones, users can share their location anytime, anywhere, as a form of check-in data. These data reflect user preferences. Furthermore, the preference rules for different users vary. How to discover a user's preference from their related information and how to validate whether a preference model is suited to a user is important for providing a suitable service to the user. This study provides four main contributions. First, multiple preference models from different views for each user are constructed. Second, an algorithm is proposed to validate whether a preference model is applicable to the user by calculating the stability value of the user's long-term check-in data for each model. Third, a unified model, i.e., a multi-channel convolutional neural network is used to characterize this applicability. Finally, three datasets from multiple sources are used to verify the validity of the method, the results of which show the effectiveness of the method.
翻译:随着移动电话的广泛使用,用户可以随时随地、任何地方分享其位置,作为报到数据的一种形式。这些数据反映了用户的偏好。此外,不同用户的偏好规则各有不同。如何发现用户偏好于其相关信息,以及如何验证偏好模式是否适合用户,对于向用户提供适当服务十分重要。本研究提供了四大贡献。首先,根据对每个用户的不同观点构建了多种偏好模式。第二,提出算法,通过计算用户对每种模型的长期登入数据的稳定性值来验证偏好模式是否适用于用户。第三,使用一个统一的模型,即多通道神经网络来描述这一适用性。最后,使用三个来自多个来源的数据集来验证方法的有效性,其结果显示了方法的有效性。