Trojan backdoor is a poisoning attack against Neural Network (NN) classifiers in which adversaries try to exploit the (highly desirable) model reuse property to implant Trojans into model parameters for backdoor breaches through a poisoned training process. Most of the proposed defenses against Trojan attacks assume a white-box setup, in which the defender either has access to the inner state of NN or is able to run back-propagation through it. In this work, we propose a more practical black-box defense, dubbed TrojDef, which can only run forward-pass of the NN. TrojDef tries to identify and filter out Trojan inputs (i.e., inputs augmented with the Trojan trigger) by monitoring the changes in the prediction confidence when the input is repeatedly perturbed by random noise. We derive a function based on the prediction outputs which is called the prediction confidence bound to decide whether the input example is Trojan or not. The intuition is that Trojan inputs are more stable as the misclassification only depends on the trigger, while benign inputs will suffer when augmented with noise due to the perturbation of the classification features. Through mathematical analysis, we show that if the attacker is perfect in injecting the backdoor, the Trojan infected model will be trained to learn the appropriate prediction confidence bound, which is used to distinguish Trojan and benign inputs under arbitrary perturbations. However, because the attacker might not be perfect in injecting the backdoor, we introduce a nonlinear transform to the prediction confidence bound to improve the detection accuracy in practical settings. Extensive empirical evaluations show that TrojDef significantly outperforms the-state-of-the-art defenses and is highly stable under different settings, even when the classifier architecture, the training process, or the hyper-parameters change.


翻译:TrojDef试图通过监测预测信心的变化, 当输入反复受到随机噪音的干扰时, 大部分针对Trojan袭击的拟议防御假设是白箱设置, 捍卫者要么可以接触到NNN的内部状态, 要么能够通过它进行反向分析。 在这项工作中, 我们提出一个更实用的黑箱防御, 称为TrojDef, 只能追溯NN的准确性。 TrojDef试图通过检测来识别和过滤Trojan的预测输入( 即, 投入随着Trojan的触发而增加) 。 当输入反复受到随机噪音的干扰时, 大部分针对Trojan袭击的拟议防御假定是白箱设置。 我们根据预测输出产生一个函数, 即需要预测信心约束来决定输入是否是Trojan。 我们的直觉是, 木座输入更加精确, 因为错误的分类只能依靠NNNE。 Trojural的精确度变化, 而良性输入将随着攻击的噪音的增加而受到影响。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月18日
Arxiv
0+阅读 · 2022年10月13日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员