As an emerging machine learning paradigm, self-supervised learning (SSL) is able to learn high-quality representations for complex data without data labels. Prior work shows that, besides obviating the reliance on labeling, SSL also benefits adversarial robustness by making it more challenging for the adversary to manipulate model prediction. However, whether this robustness benefit generalizes to other types of attacks remains an open question. We explore this question in the context of trojan attacks by showing that SSL is comparably vulnerable as supervised learning to trojan attacks. Specifically, we design and evaluate CTRL, an extremely simple self-supervised trojan attack. By polluting a tiny fraction of training data (less than 1%) with indistinguishable poisoning samples, CTRL causes any trigger-embedded input to be misclassified to the adversary's desired class with a high probability (over 99%) at inference. More importantly, through the lens of CTRL, we study the mechanisms underlying self-supervised trojan attacks. With both empirical and analytical evidence, we reveal that the representation invariance property of SSL, which benefits adversarial robustness, may also be the very reason making SSL highly vulnerable to trojan attacks. We further discuss the fundamental challenges to defending against self-supervised trojan attacks, pointing to promising directions for future research.


翻译:作为新兴的机器学习模式,自我监督的学习(SSL)能够学习没有数据标签的复杂数据的高质量表现。先前的工作表明,除了避免依赖标签之外,SSL还可以使对手更难操纵模型预测,从而有利于对抗性强健。然而,这种稳健性是否有利于推广到其他类型的攻击,仍然是一个尚未解决的问题。我们在热带攻击背景下探讨这个问题,显示SSL比受监督的学习更容易受到天体攻击的伤害。具体地说,我们设计和评价CTRL,这是一次极其简单的自我监督的天体攻击。通过污染一小部分训练数据(不到1 % ) 和不可分辨的中毒样本,SSL还有利于对抗性攻击,CTRL造成任何触发性投入被错误地分解到对手所期望的类别,极有可能(超过99%)推断。更重要的是,通过CTRL,我们研究了自我监督的天体攻击背后的脆弱机制。我们通过实验和分析证据,通过污染微小部分的培训数据(不到1 % ) 污染了微的训练数据,我们揭示了SL的自我防御性攻击背后的弱点。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
162+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员