Given a set of solution snapshots of a hyperbolic PDE, we are interested in learning a reduced order model (ROM). To this end, we propose a novel decompose then learn approach. We decompose the solution by expressing it as a composition of a transformed solution and a de-transformer. Our idea is to learn a ROM for both these objects, which, unlike the solution, are well approximable in a linear reduced space. A ROM for the (untransformed) solution is then recovered via a recomposition. The transformed solution results from composing the solution with a spatial transform that aligns the spatial discontinuities. Furthermore, the de-transformer is the inverse of the spatial transform and lets us recover a ROM for the solution. We consider an image registration technique to compute the spatial transform, and to learn a ROM, we resort to the dynamic mode decomposition (DMD) methodology. Several benchmark problems demonstrate the effectiveness our method in representing the data and as a predictive tool.
翻译:根据一套双曲 PDE 的解决方案,我们有兴趣学习一个降序模型(ROM) 。 为此,我们提出一个新的分解模式,然后学习方法。 我们通过表达一个转变的解决方案的构成和脱转来分解解决方案。 我们的想法是为这两个对象学习一个ROM, 与解决方案不同, 在一个线性缩小的空间中非常接近。 然后通过重新组合来回收一个(不转换的)解决方案的ROM。 转变的解决方案是用空间变换来构建解决方案, 使空间变换与空间的不连续性相一致。 此外, 脱转是空间变换的反面, 并让我们找到一个解决方案的ROM。 我们考虑一种图像注册技术, 来配置空间变换, 并学习一个ROM, 我们使用动态模式解压缩方法。 几个基准问题证明了我们代表数据和作为预测工具的方法的有效性。