In literature, Extended Object Tracking (EOT) algorithms developed for autonomous driving predominantly provide obstacles state estimation in cartesian coordinates in the Vehicle Reference Frame. However, in many scenarios, state representation in road-aligned curvilinear coordinates is preferred when implementing autonomous driving subsystems like cruise control, lane-keeping assist, platooning, etc. This paper proposes a Gaussian Mixture Probability Hypothesis Density~(GM-PHD) filter with an Unscented Kalman Filter~(UKF) estimator that provides obstacle state estimates in curvilinear road coordinates. We employ a hybrid sensor fusion architecture between Lidar and Radar sensors to obtain rich measurement point representations for EOT. The measurement model for the UKF estimator is developed with the integration of coordinate conversion from curvilinear road coordinates to cartesian coordinates by using cubic hermit spline road model. The proposed algorithm is validated through Matlab Driving Scenario Designer simulation and experimental data collected at Monza Eni Circuit.
翻译:在文献中,为自主驾驶而开发的扩展物体跟踪算法主要在车辆参考框架的碳酸盐坐标中提供国家估计障碍。然而,在许多情形中,在采用自动驾驶子系统,如巡航控制、车道维护协助、排等,倾向于在道路接轨曲线坐标上的国家代表制。本文建议采用高山混凝土混凝土概率假冒密度~(GM-PHD)过滤器,配有不突出的卡尔曼过滤器~(UKF)测量器,在曲线路坐标上提供障碍状态估计。我们采用了利达尔和雷达传感器之间的混合传感器聚合结构,以获得丰富的EOT测量点表示。UKF估计仪的测量模型是结合协调,从卷线公路坐标转换成cartesian坐标,使用立心螺旋杆样路模型。提议的算法通过Matlab Driving情景设计器模拟和Monza Eni电路采集的实验数据得到验证。