With the remarkable empirical success of neural networks across diverse scientific disciplines, rigorous error and convergence analysis are also being developed and enriched. However, there has been little theoretical work focusing on neural networks in solving interface problems. In this paper, we perform a convergence analysis of physics-informed neural networks (PINNs) for solving second-order elliptic interface problems. Specifically, we consider PINNs with domain decomposition technologies and introduce gradient-enhanced strategies on the interfaces to deal with boundary and interface jump conditions. It is shown that the neural network sequence obtained by minimizing a Lipschitz regularized loss function converges to the unique solution to the interface problem in $H^2$ as the number of samples increases. Numerical experiments are provided to demonstrate our theoretical analysis.


翻译:随着神经网络在各个科学领域中的卓越实证成功,越来越多的误差和收敛分析也正在被开发和丰富。然而,在解界面问题时,很少有理论工作关注神经网络。在本文中,我们对解二阶椭圆形界面问题的物理启示神经网络(PINNs)进行了一项收敛性分析。具体而言,我们考虑了具有领域分解技术的PINNs,并引入了界面上的梯度增强策略,以处理边界和界面跳跃条件。结果表明,通过最小化Lipschitz正则化损失函数获得的神经网络序列会随着样本数量的增加收敛到解决方案的唯一解。我们提供了数值实验来展示我们的理论分析。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月14日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员