We study the large sample properties of sparse M-estimators in the presence of pseudo-observations. Our framework covers a broad class of semi-parametric copula models, for which the marginal distributions are unknown and replaced by their empirical counterparts. It is well known that the latter modification significantly alters the limiting laws compared to usual M-estimation. We establish the consistency and the asymptotic normality of our sparse penalized M-estimator and we prove the asymptotic oracle property with pseudo-observations, possibly in the case when the number of parameters is diverging. Our framework allows to manage copula-based loss functions that are potentially unbounded. Additionally, we state the weak limit of multivariate rank statistics for an arbitrary dimension and the weak convergence of empirical copula processes indexed by maps. We apply our inference method to Canonical Maximum Likelihood losses with Gaussian copulas, mixtures of copulas or conditional copulas. The theoretical results are illustrated by two numerical experiments.
翻译:我们研究了在假观察下稀有测算器的大量样本特性。我们的框架覆盖了广泛的半参数焦云模型,其边际分布并不为人知,由经验性对应方取而代之。众所周知,后者的修改大大改变了与通常测算相比的限制性法律。我们确定了我们稀有的受处罚测算器的一致性和无症状的正常性。我们用伪观察证明了无症状或触角特性,也许在参数数量不同的情况下。我们的框架允许管理可能不受约束的基于焦云的损失功能。此外,我们用两个数字实验来说明多变量级统计数据中任意尺寸的薄弱限度,以及用地图索引编制的经验性焦云处理过程的薄弱趋同性。我们用我们的推论方法,用高斯干毛、椰子混合物或有条件的焦云来解释Caussaus的最大隐隐性损失。理论结果通过两个数字实验来说明。