Reliably estimating the uncertainty of a prediction throughout the model lifecycle is crucial in many safety-critical applications. The most common way to measure this uncertainty is via the predicted confidence. While this tends to work well for in-domain samples, these estimates are unreliable under domain drift and restricted to classification. Alternatively, proper scores can be used for most predictive tasks but a bias-variance decomposition for model uncertainty does not exist in the current literature. In this work we introduce a general bias-variance decomposition for proper scores, giving rise to the Bregman Information as the variance term. We discover how exponential families and the classification log-likelihood are special cases and provide novel formulations. Surprisingly, we can express the classification case purely in the logit space. We showcase the practical relevance of this decomposition on several downstream tasks, including model ensembles and confidence regions. Further, we demonstrate how different approximations of the instance-level Bregman Information allow reliable out-of-distribution detection for all degrees of domain drift.
翻译:对模型生命周期中预测的不确定性进行可靠估计在许多安全关键应用中至关重要。测量这种不确定性的最常用方法是预测信心。虽然这种估计往往对内部样本有效,但在域漂移和限于分类方面是不可靠的。或者,对大多数预测性任务使用适当的分数,但在目前的文献中不存在模型不确定性的偏差分解。在这项工作中,我们对正确分数采用一般的偏差分分分法,从而得出Bregman Information作为差异术语。我们发现指数式的家庭和分类日志相似性是如何是特殊案例的,并提供新的配方。令人惊讶的是,我们可以纯粹在登录空间表达分类案例。我们展示这种分解对于若干下游任务的实际相关性,包括模型内聚和信心区域。此外,我们展示了实例级Bregman信息的不同近比值如何允许对不同程度的域流进行可靠的分配外探测。</s>