High-quality annotated images are significant to deep facial expression recognition (FER) methods. However, uncertain labels, mostly existing in large-scale public datasets, often mislead the training process. In this paper, we achieve uncertain label correction of facial expressions using auxiliary action unit (AU) graphs, called ULC-AG. Specifically, a weighted regularization module is introduced to highlight valid samples and suppress category imbalance in every batch. Based on the latent dependency between emotions and AUs, an auxiliary branch using graph convolutional layers is added to extract the semantic information from graph topologies. Finally, a re-labeling strategy corrects the ambiguous annotations by comparing their feature similarities with semantic templates. Experiments show that our ULC-AG achieves 89.31% and 61.57% accuracy on RAF-DB and AffectNet datasets, respectively, outperforming the baseline and state-of-the-art methods.
翻译:高质量的附加说明图像对于深层面部表情识别(FER)方法意义重大。 但是,不确定标签(大多存在于大型公共数据集中)往往误导培训过程。 在本文中,我们使用称为ULC-AG的辅助行动单位图形(AU)对面部表情进行不确定的标签校正。 具体地说,引入了一个加权正规化模块,以突出有效的样本,并抑制每批样本中的分类不平衡。 根据情感和AUs之间的潜在依赖性,添加了一个使用图示相层的辅助分支,以从图表表层中提取语义信息。 最后,重新标签战略通过比较其特征与语义模板的相似性来纠正模糊的注释。 实验显示,我们的ULC-AG在RAF-DB和AfectNet数据集上分别实现了89.31%和61.57%的准确度,超过了基线和最新技术方法。