Cross-diffusion systems arise as hydrodynamic limits of lattice multi-species interacting particle models. The objective of this work is to provide a numerical scheme for the simulation of the cross-diffusion system identified in [J. Quastel, Comm. Pure Appl. Math., 45 (1992), pp. 623--679]. To simulate this system, it is necessary to provide an approximation of the so-called self-diffusion coefficient matrix of the tagged particle process. Classical algorithms for the computation of this matrix are based on the estimation of the long-time limit of the average mean square displacement of the particle. In this work, as an alternative, we propose a novel approach for computing the self-diffusion coefficient using deterministic low-rank approximation techniques, as the minimum of a high-dimensional optimization problem. The computed self-diffusion coefficient is then used for the simulation of the cross-diffusion system using an implicit finite volume scheme.
翻译:这项工作的目的是为模拟[J. Quastel,Comm. Pure Appl. Math., 45(1992), pp.623-679]中所查明的交叉扩散系统提供一个数字办法。为了模拟这个系统,必须提供贴有标签的粒子过程所谓的自扩散系数矩阵的近似值。计算该矩阵的典型算法基于粒子平均平均正平方位移位的长期限值。在这项工作中,作为替代办法,我们提出一种新的方法,用确定性低级近距离近距离接近技术计算自扩散系数,作为高维优化问题的最低值。然后使用隐含的有限体积计划计算自扩散系数来模拟交叉扩散系统。