We resolve the approximability of the maximum energy of the Quantum Max Cut (QMC) problem using product states. A classical 0.498-approximation, using a basic semidefinite programming relaxation, is known for QMC, paralleling the celebrated 0.878-approximation for classical Max Cut. For Max Cut, improving the 0.878-approximation is Unique-Games-hard (UG-hard), and one might expect that improving the 0.498-approximation is UG-hard for QMC. In contrast, we give a classical 1/2-approximation for QMC that is unconditionally optimal, since simple examples exhibit a gap of 1/2 between the energies of an optimal product state and general quantum state. Our result relies on a new nonlinear monogamy of entanglement inequality on a triangle that is derived from the second level of the quantum Lasserre hierarchy. This inequality also applies to the quantum Heisenberg model, and our results generalize to instances of Max 2-Local Hamiltonian where each term is positive and has no 1-local parts. Finally, we give further evidence that product states are essential for approximations of 2-Local Hamiltonian.
翻译:我们用产品状态解决了Qantum Max Cut(QMC)问题的最大能量的近似性。 典型的0. 498比方,使用基本的半半无线编程放松,QMC为典型的0. 498比方,同时为古典的Max Cut提供了经庆祝的0. 878比方,改进了0.878比方是UG-Games-hard(UG-hard),人们可能会期望改进0. 498比方的配方是QMC的UG-hard。 相反,我们给QMC提供了无条件最佳的经典0. 1/ 1/ 准方,因为简单的例子显示最佳产品状态和一般量子状态的能量之间有四分之一的差距。 我们的结果依赖于从量量级拉塞尔等级的第二层(UG-hard)产生的三角上的新的非线性融合不平等性。 这种不平等性也适用于量级海森堡模型,而我们的结果则概括了Max 2- 本地的汉密尔密尔密尔顿模型,其中每个术语都是正的, 最终没有一级数据。