Modeling physical phenomena like heat transport and diffusion is crucially dependent on the numerical solution of partial differential equations (PDEs). A PDE solver finds the solution given coefficients and a boundary condition, whereas an inverse PDE solver goes the opposite way and reconstructs these inputs from an existing solution. In this article, we investigate techniques for solving inverse PDE problems using a gradient-based methodology. Conventional PDE solvers based on the finite element method require a domain meshing step that can be fragile and costly. Grid-free Monte Carlo methods instead stochastically sample paths using variations of the walk on spheres algorithm to construct an unbiased estimator of the solution. The uncanny similarity of these methods to physically-based rendering algorithms has been observed by several recent works. In the area of rendering, recent progress has led to the development of efficient unbiased derivative estimators. They solve an adjoint form of the problem and exploit arithmetic invertibility to compute gradients using a constant amount of memory and linear time complexity. Could these two lines of work be combined to compute cheap parametric derivatives of a grid-free PDE solver? We investigate this question and present preliminary results.
翻译:模拟热迁移和传播等物理现象,关键取决于部分差异方程式(PDEs)的数字解决方案。PDE求解器找到给定系数和边界条件的解决方案,而反的PDE求解器则相反,从现有解决方案中重建这些投入。在本条中,我们调查使用梯度方法解决反PDE问题的技术。基于有限元素方法的常规PDE解答器需要一个易碎和昂贵的域网网网网网网网网路。没有Grid Monte Carlo 方法,而采用随机抽样路径,使用场外行算法的变量来构建一个公正的解决方案估计器。这些方法与基于物理的设定算法不相像,最近几个工程已经观察到了这一点。在演算领域,最近的进展导致开发了高效的无偏向衍生估计器。它们解决了问题的一种联结形式,并且利用算术的可逆性来用不变的记忆量和线性时间复杂性来计算梯度。这两个工作路线能否结合到对目前无电网点解决方案的廉价准衍生器的参数和初步结果?我们调查了这个问题和初步结果。