Four-variable-independent-regression localization losses, such as Smooth-$\ell_1$ Loss, are used by default in modern detectors. Nevertheless, this kind of loss is oversimplified so that it is inconsistent with the final evaluation metric, intersection over union (IoU). Directly employing the standard IoU is also not infeasible, since the constant-zero plateau in the case of non-overlapping boxes and the non-zero gradient at the minimum may make it not trainable. Accordingly, we propose a systematic method to address these problems. Firstly, we propose a new metric, the extended IoU (EIoU), which is well-defined when two boxes are not overlapping and reduced to the standard IoU when overlapping. Secondly, we present the convexification technique (CT) to construct a loss on the basis of EIoU, which can guarantee the gradient at the minimum to be zero. Thirdly, we propose a steady optimization technique (SOT) to make the fractional EIoU loss approaching the minimum more steadily and smoothly. Fourthly, to fully exploit the capability of the EIoU based loss, we introduce an interrelated IoU-predicting head to further boost localization accuracy. With the proposed contributions, the new method incorporated into Faster R-CNN with ResNet50+FPN as the backbone yields \textbf{4.2 mAP} gain on VOC2007 and \textbf{2.3 mAP} gain on COCO2017 over the baseline Smooth-$\ell_1$ Loss, at almost \textbf{no training and inferencing computational cost}. Specifically, the stricter the metric is, the more notable the gain is, improving \textbf{8.2 mAP} on VOC2007 and \textbf{5.4 mAP} on COCO2017 at metric $AP_{90}$.


翻译:4- 可变独立回归本地化损失, 如平滑 {美元\ ell_ 1$ 损失, 被默认的现代探测器使用。 然而, 这种损失过于简单化, 因而与最后评估标准不符, 交错于联盟( IoU ) 。 直接使用标准的 IOU 也是不可行的, 因为对于不重叠的框和最低非零梯度来说, 恒定零高点可能使得它无法进行训练。 因此, 我们提出一个系统化的方法来解决这些问题。 首先, 我们提出一个新的指标, 扩展 IOU (EIOU ), 当两个框不重叠, 并降低到标准 IOU (IOU ) 重叠时, 它的定义非常明确。 其次, 我们提出在EOUU( CO) 的情况下, 恒定零高点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点。 第三, 我们提议稳定地优化 EI- 将成本 进一步提高 EI- 和平点平点平点平点平点平点平点,,, 以 将 平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点,,,,, 以,, 以 以 以 平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平点平方 。

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年7月28日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
21+阅读 · 2021年5月1日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Arxiv
0+阅读 · 2022年2月6日
Deformable ConvNets v2: More Deformable, Better Results
Arxiv
3+阅读 · 2018年4月9日
VIP会员
Top
微信扫码咨询专知VIP会员