In this paper, we present an end-to-end attention-based convolutional recurrent autoencoder network (AB-CRAN) for data-driven modeling of wave propagation phenomena. To construct the low-dimensional learning model, we employ a denoising-based convolutional autoencoder from the full-order snapshots of wave propagation generated by solving hyperbolic partial differential equations. The proposed deep neural network architecture relies on the attention-based recurrent neural network (RNN) with long short-term memory (LSTM) cells for constructing the trajectory in the latent space. We assess the proposed AB-CRAN framework against the standard RNN-LSTM for the low-dimensional learning of wave propagation. To demonstrate the effectiveness of the AB-CRAN model, we consider three benchmark problems namely one-dimensional linear convection, nonlinear viscous Burgers, and two-dimensional Saint-Venant shallow water system. Using the time-series datasets from the benchmark problems, our novel AB-CRAN architecture accurately captures the wave amplitude and preserves the wave characteristics of the solution for long time horizons. The attention-based sequence-to-sequence network increases the time-horizon of prediction by five times compared to the standard RNN-LSTM. Denoising autoencoder further reduces the mean squared error of prediction and improves the generalization capability in the parameter space.
翻译:在本文中,我们展示了一个以端到端关注为主的波传播现象连续自动coard网络(AB-CRAN),用于建立波传播现象的数据驱动模型。为了构建低维学习模型,我们从解决超偏偏偏偏偏偏差方程式产生的波传播全序快照中采用分解基础的共振自动coarder;拟议的深神经网络架构依赖于基于关注的有长期短期内存(LSTM)细胞的常规神经网络(RNN),用于建造潜空轨迹。我们对照标准RNN-LSTM,评估拟议的AB-CRAAN框架,用于低维波传播的低维度学习模型。为了展示AB-CRAN模型的有效性,我们考虑了三个基准问题,即单维线直线对流对流、非线粘力对布尔格斯和双维圣Venant浅水系统。利用基准问题的时间序列数据集,我们的新AB-CRAN架构精确地捕捉摸了波沉度,并保存了以时序为主的SLSLS常规预测系统对长期周期的周期的周期。