In this paper, we propose a mesh-free numerical method for solving elliptic PDEs on unknown manifolds, identified with randomly sampled point cloud data. The PDE solver is formulated as a spectral method where the test function space is the span of the leading eigenfunctions of the Laplacian operator, which are approximated from the point cloud data. While the framework is flexible for any test functional space, we will consider the eigensolutions of a weighted Laplacian obtained from a symmetric Radial Basis Function (RBF) method induced by a weak approximation of a weighted Laplacian on an appropriate Hilbert space. Especially, we consider a test function space that encodes the geometry of the data yet does not require us to identify and use the sampling density of the point cloud. To attain a more accurate approximation of the expansion coefficients, we adopt a second-order tangent space estimation method to improve the RBF interpolation accuracy in estimating the tangential derivatives. This spectral framework allows us to efficiently solve the PDE many times subjected to different parameters, which reduces the computational cost in the related inverse problem applications. In a well-posed elliptic PDE setting with randomly sampled point cloud data, we provide a theoretical analysis to demonstrate the convergent of the proposed solver as the sample size increases. We also report some numerical studies that show the convergence of the spectral solver on simple manifolds and unknown, rough surfaces. Our numerical results suggest that the proposed method is more accurate than a graph Laplacian-based solver on smooth manifolds. On rough manifolds, these two approaches are comparable. Due to the flexibility of the framework, we empirically found improved accuracies in both smoothed and unsmoothed Stanford bunny domains by blending the graph Laplacian eigensolutions and RBF interpolator.


翻译:在本文中, 我们提出一个无网格的数字方法, 用于解决在未知的方块上的椭圆 PDE, 由随机抽样的点云数据确定。 PDE 求解器是一个光谱方法, 测试函数空间是 Laplacian 操作器的顶部天分, 与点云数据相近。 虽然这个框架对于任何测试功能空间来说都是灵活的, 我们将会考虑从一个对称的平流路面光基函数( RBE ) 中获取的加权粗平方平面 PDE 方法( RBF ) 。 这个光谱框架可以让我们在适当的平流平流平流平流空间上有效解析加权的拉普尔卡 。 特别是, 我们考虑一个测试功能空间, 将数据测算的几何体积, 但不要求我们识别并使用点云层云层云的密度密度。 为了更精确的平流法计算, 我们用这个光谱框架可以有效地解算出一个双向的平流点的平流法 。 我们的平流的平流的平流的平流数据分析发现, 这些平流的平流的平流的平流法的平流法的平流法可以显示两个不同的平流的平流法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月30日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员