As an anode material for lithium-ion batteries, amorphous silicon offers a significantly higher energy density than the graphite anodes currently used. Alloying reactions of lithium and silicon, however, induce large deformation and lead to volume changes up to 300%. We formulate a thermodynamically consistent continuum model for the chemo-elasto-plastic diffusion-deformation based on finite deformations. In this paper, a plastic deformation approach with linear isotropic hardening and a viscoplastic deformation ansatz are investigated and compared to allow the evolution of plastic deformations and reduce occurring stresses. For both models, a return mapping can be derived to update the equivalent plastic strain for the next time step. Using a finite element method and an efficient space and time adaptive solution algorithm a large number of charging cycles can be examined. We derive a linearization for the global Newton scheme and compare it to an automatic differentiation technique regarding the numerical performance and physical results. Both plastic approaches lead to a stronger heterogeneous concentration distribution and to a change to tensile tangential Cauchy stresses at the particle surface at the end of one charging cycle. Different parameter studies show how an amplification of the plastic deformation is affected. Interestingly, an elliptical particle shows only plastic deformation at the smaller half axis. With the demonstrated efficiency of the applied methods, results after five charging cycles are also discussed and can provide indications for the performance of lithium-ion batteries in long term use.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员