We propose the Margin Adaptation for Generative Adversarial Networks (MAGANs) algorithm, a novel training procedure for GANs to improve stability and performance by using an adaptive hinge loss function. We estimate the appropriate hinge loss margin with the expected energy of the target distribution, and derive principled criteria for when to update the margin. We prove that our method converges to its global optimum under certain assumptions. Evaluated on the task of unsupervised image generation, the proposed training procedure is simple yet robust on a diverse set of data, and achieves qualitative and quantitative improvements compared to the state-of-the-art.


翻译:我们提出“创造反逆网络的边际适应”算法,这是全球网络使用适应性断链损失功能提高稳定性和性能的新培训程序。我们估算目标分布的预期能量是否适当,并得出何时更新差值的原则标准。我们证明在某些假设下,我们的方法与全球最佳方法一致。在无监督的图像生成任务方面,拟议培训程序简单而可靠,涉及多种数据,与最新技术相比,在质量和数量上都有改进。

0
下载
关闭预览

相关内容

生成式对抗网络GAN异常检测
专知会员服务
117+阅读 · 2019年10月13日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ICCV17 :12为顶级大牛教你学生成对抗网络(GAN)!
全球人工智能
8+阅读 · 2017年11月26日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
5+阅读 · 2018年5月21日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
Top
微信扫码咨询专知VIP会员