Commonsense question answering requires reasoning about everyday situations and causes and effects implicit in context. Typically, existing approaches first retrieve external evidence and then perform commonsense reasoning using these evidence. In this paper, we propose a Self-supervised Bidirectional Encoder Representation Learning of Commonsense (elBERto) framework, which is compatible with off-the-shelf QA model architectures. The framework comprises five self-supervised tasks to force the model to fully exploit the additional training signals from contexts containing rich commonsense. The tasks include a novel Contrastive Relation Learning task to encourage the model to distinguish between logically contrastive contexts, a new Jigsaw Puzzle task that requires the model to infer logical chains in long contexts, and three classic SSL tasks to maintain pre-trained models language encoding ability. On the representative WIQA, CosmosQA, and ReClor datasets, elBERto outperforms all other methods, including those utilizing explicit graph reasoning and external knowledge retrieval. Moreover, elBERto achieves substantial improvements on out-of-paragraph and no-effect questions where simple lexical similarity comparison does not help, indicating that it successfully learns commonsense and is able to leverage it when given dynamic context.
翻译:常见问题解答要求对日常情况以及背景中隐含的原因和影响进行推理。 通常, 现有方法首先检索外部证据, 然后再使用这些证据进行常识推理。 在本文中, 我们提出一个自监督的双向编码器常见(elberto)学习双向编码器框架, 该框架与现成的QA模型结构兼容。 框架由五个自监督的任务组成, 以迫使模型充分利用来自含有丰富共性背景的额外培训信号。 任务包括一项新颖的对比关系学习任务, 鼓励模型区分逻辑对比背景, 一项新的 Jigsaw 拼字游戏任务, 要求模型在长背景下推断逻辑链, 以及三种经典的SSL任务, 以保持预先培训的模型语言编码能力。 在有代表性的 WIQA、 CosmosQA 和 ReCloror数据集方面, ExBERT 超越了所有其他方法, 包括使用清晰的图形推理和外部知识检索的方法。 此外, ExBERTO 实现校外和无影响问题的重大改进, 在简单地法系比较时, 能够成功地学习共同的法系。