Recent knowledge enhanced pre-trained language models have shown remarkable performance on downstream tasks by incorporating structured knowledge from external sources into language models. However, they usually suffer from a heterogeneous information alignment problem and a noisy knowledge injection problem. For complex reasoning, the contexts contain rich knowledge that typically exists in complex and sparse forms. In order to model structured knowledge in the context and avoid these two problems, we propose to unify structure reasoning and language model pre-training. It identifies four types of elementary knowledge structures from contexts to construct structured queries, and utilizes the box embedding method to conduct explicit structure reasoning along queries during language modeling. To fuse textual and structured semantics, we utilize contextual language representations of knowledge structures to initialize their box embeddings for structure reasoning. We conduct experiments on complex language reasoning and knowledge graph (KG) reasoning tasks. The results show that our model can effectively enhance the performance of complex reasoning of both language and KG modalities.


翻译:最近的知识强化了培训前语言模式,通过将外部来源的结构化知识纳入语言模式,在下游任务中表现出了显著的成绩,但是,它们通常会遇到信息协调问题和知识注入的烦琐问题。对于复杂的推理,背景中包含着通常以复杂和稀少的形式存在的丰富知识。为了在背景中建模结构化知识,避免这两个问题,我们建议统一结构推理和语言模式的预培训。它确定了四种基本知识结构,从背景到结构化查询,并利用嵌入方法在语言模型的查询中进行明确的结构推理。为了整合文本和结构化的语义学,我们利用知识结构的背景语言表达来启动结构推理的嵌入盒。我们进行了关于复杂的语言推理和知识图(KG)推理任务的实验。结果表明,我们的模型能够有效地提高语言和KG模式复杂推理的绩效。

1
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员