The classical $\textit{Procrustes}$ problem is to find a rigid motion (orthogonal transformation and translation) that best aligns two given point-sets in the least-squares sense. The $\textit{Robust Procrustes}$ problem is an important variant, in which a power-1 objective is used instead of least squares to improve robustness to outliers. While the optimal solution of the least-squares problem can be easily computed in closed form, dating back to Sch\"onemann (1966), no such solution is known for the power-1 problem. In this paper we propose a novel convex relaxation for the Robust Procrustes problem. Our relaxation enjoys several theoretical and practical advantages: Theoretically, we prove that our method provides a $\sqrt{2}$-factor approximation to the Robust Procrustes problem, and that, under appropriate assumptions, it exactly recovers the true rigid motion from point correspondences contaminated by outliers. In practice, we find in numerical experiments on both synthetic and real robust Procrustes problems, that our method performs similarly to the standard Iteratively Reweighted Least Squares (IRLS). However the convexity of our algorithm allows incorporating additional convex penalties, which are not readily amenable to IRLS. This turns out to be a substantial advantage, leading to improved results in high-dimensional problems, including non-rigid shape alignment and semi-supervised interlingual word translation.
翻译:古典 $\ textit{ Procrustes} 问题在于找到一种最硬的动作( orthogonal translate and translate), 最能将两个点设置在最不平方感上。 $\ textit{ Robust Procrustes} 问题是一个重要的变体, 使用一种权力-1 目标, 而不是最不平方来提高外部线的稳健性。 虽然最不平方问题的最佳解决办法可以很容易地以封闭的形式计算, 追溯到 Sch\'onemann( 1966), 但对于非权力-1 的问题, 并不存在任何这样的解决方案。 在本文中, 我们建议对硬性硬性平方位问题采取新的平面松动。 然而, 我们的平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面, 平面平面平面平面平面平面平面平面平面平面平面平面平面平, 平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平,平平平平平平平平平平平平平平平,平平平平平平平平平平平平平平,平平平平平平平平平平平平平平平平平,平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平,平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平,平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平