Federated learning learns from scattered data by fusing collaborative models from local nodes. However, the conventional coordinate-based model averaging by FedAvg ignored the random information encoded per parameter and may suffer from structural feature misalignment. In this work, we propose Fed2, a feature-aligned federated learning framework to resolve this issue by establishing a firm structure-feature alignment across the collaborative models. Fed2 is composed of two major designs: First, we design a feature-oriented model structure adaptation method to ensure explicit feature allocation in different neural network structures. Applying the structure adaptation to collaborative models, matchable structures with similar feature information can be initialized at the very early training stage. During the federated learning process, we then propose a feature paired averaging scheme to guarantee aligned feature distribution and maintain no feature fusion conflicts under either IID or non-IID scenarios. Eventually, Fed2 could effectively enhance the federated learning convergence performance under extensive homo- and heterogeneous settings, providing excellent convergence speed, accuracy, and computation/communication efficiency.
翻译:FedAvg平均采用常规协调模式,对每个参数进行随机编码,并可能受到结构特征不匹配的影响。在这项工作中,我们提议Fed2, 一个与地貌一致的联邦学习框架,通过在协作模式中建立固定的结构特点调整来解决这个问题。Fed2由两个主要设计组成:第一,我们设计了一个以地貌为导向的模式结构调整方法,以确保在不同神经网络结构中明确分配特征。将结构适应应用到合作模式,可以在早期培训阶段就启动具有类似特征信息的可匹配结构。在联合学习过程中,我们然后提出一个与地貌相配平均计划,以保障地貌分布一致,在ID或非IID情景下不发生特征融合冲突。最后,Fed2可以有效地提高在广泛的同性和异性环境下的联邦学习融合性表现,提供极好的趋同速度、准确性和计算/通信效率。