We analyse and classify the sentiments of a text data constructed from movie reviews. For this, we use the kernel-based approach from quantum machine learning algorithms. In order to compose a quantum kernel, we use a circuit constructed using a combination of different Pauli rotational gates where the rotational parameter is a classical non-linear function of data points obtained from the text data. For analysing the performance of the proposed model, we analyse the quantum model using decision tree, gradient boosting classifier, and classical and quantum support vector machines. Our results show that quantum kernel model or quantum support vector machine outperforms all other algorithms used for analysis in terms of all evaluation metrics. In comparison to a classical support vector machine, the quantum support vector machine leads to significantly better results even with increased number of features or dimensions. The results clearly demonstrate increase in precision score by $9.4 \%$ using a quantum support vector machine as against a classical support vector machine if the number of features are $15$.
翻译:我们用量子机器学习算法分析和分类从电影审查中构建的文本数据的感官。 为此, 我们使用量子机器学习算法的内核法。 为了组成量子内核, 我们使用混合不同保利旋转门的电路, 其中旋转参数是从文本数据中获取的数据点的经典非线性函数。 为了分析拟议模型的性能, 我们用决定树、 梯度振动分类器、 古典和量子支持矢量机器来分析量子模型。 我们的结果表明, 量子内核模型或量子支持矢量机器比用于分析所有评估指标的所有其他算法都好。 与古典支持矢量机器相比, 量子支持矢量机器即使特性或维度增加, 也取得显著更好的结果。 结果表明, 如果特性数为15,000美元, 则使用量子支持矢量媒介机相对于经典支持矢量机器的精确分数增加了9.4 ⁇ $。