In this paper, we propose a class of monitoring statistics for a mean shift in a sequence of high-dimensional observations. Inspired by the recent U-statistic based retrospective tests developed by Wang et al.(2019) and Zhang et al.(2020), we advance the U-statistic based approach to the sequential monitoring problem by developing a new adaptive monitoring procedure that can detect both dense and sparse changes in real-time. Unlike Wang et al.(2019) and Zhang et al.(2020), where self-normalization was used in their tests, we instead introduce a class of estimators for $q$-norm of the covariance matrix and prove their ratio consistency. To facilitate fast computation, we further develop recursive algorithms to improve the computational efficiency of the monitoring procedure. The advantage of the proposed methodology is demonstrated via simulation studies and real data illustrations.
翻译:在本文中,我们建议为一系列高维观测的中度变化提供一类监测统计数据。在Wang等人(2019年)和Zhang等人(2020年)最近开发的基于U-统计的追溯性测试的启发下,我们通过开发一种新的适应性监测程序,既能探测实时的密集变化,又能探测到稀少变化,从而推进基于U-统计的连续监测问题。与Wang等人(2019年)和张等人(202020年)不同,在测试中使用自我正常化的方法,我们采用了一类基于U-统计的常量度测算器,以证明共变式矩阵中以美元为核心,并证明其比率的一致性。为了便利快速计算,我们进一步开发了累进算法,以提高监测程序的计算效率,通过模拟研究和真实数据说明来展示拟议方法的优势。