The frequency-domain properties of nonstationary functional time series often contain valuable information. These properties are characterized through its time-varying power spectrum. Practitioners seeking low-dimensional summary measures of the power spectrum often partition frequencies into bands and create collapsed measures of power within bands. However, standard frequency bands have largely been developed through manual inspection of time series data and may not adequately summarize power spectra. In this article, we propose a framework for adaptive frequency band estimation of nonstationary functional time series that optimally summarizes the time-varying dynamics of the series. We develop a scan statistic and search algorithm to detect changes in the frequency domain. We establish theoretical properties of this framework and develop a computationally-efficient implementation. The validity of our method is also justified through numerous simulation studies and an application to analyzing electroencephalogram data in participants alternating between eyes open and eyes closed conditions.


翻译:非静止功能时间序列的频率域特性往往包含宝贵的信息。这些特性通过其时间变化的能量谱特征来定性。寻求对电频谱进行低维简要测量的从业者往往将频率分成波段,并在波段内形成崩溃的功率测量。然而,标准频段在很大程度上是通过对时间序列数据进行人工检查而开发的,可能无法充分归纳电光谱。在本篇文章中,我们提出了一个非静止功能序列的适应性频率波段估计框架,以优化对序列时间变化动态的分布。我们开发了扫描统计和搜索算法,以探测频率域的变化。我们建立了这一框架的理论特性,并开发了一种计算效率的落实方法。我们的方法的有效性也通过许多模拟研究以及用于分析在开放眼睛和闭眼条件下交替的参与者中电脑图数据的应用而得到证明。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Nature 一周论文导读 | 2019 年 2 月 21 日
科研圈
14+阅读 · 2019年3月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
6+阅读 · 2020年2月15日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Nature 一周论文导读 | 2019 年 2 月 21 日
科研圈
14+阅读 · 2019年3月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员