Representation modeling based on user behavior sequences is an important direction in user cognition. In this study, we propose a novel framework called Multi-Interest User Representation Model. Specifically, the model consists of two sub-models. The first sub-module is used to encode user behaviors in any period into a super-high dimensional sparse vector. Then, we design a self-supervised network to map vectors in the first module to low-dimensional dense user representations by contrastive learning. With the help of a novel attention module which can learn multi-interests of user, the second sub-module achieves almost lossless dimensionality reduction. Experiments on several benchmark datasets show that our approach works well and outperforms state-of-the-art unsupervised representation methods in different downstream tasks.
翻译:以用户行为序列为模型进行模拟是用户认知的一个重要方向。 在这项研究中, 我们提议了一个名为“ 多感兴趣的用户代表模型”的新框架。 具体地说, 该模型由两个子模型组成。 第一个子模块用于将任何时期的用户行为编码成一个超高维稀有矢量。 然后, 我们设计了一个自我监督的网络, 通过对比学习, 将第一个模块中的矢量映射成低维密集的用户表达式。 在能够学习用户多重利益的新型关注模块的帮助下, 第二个子模块实现了几乎无损的维度减少。 对几个基准数据集的实验显示, 我们的方法运作良好, 并且超越了不同下游任务中最先进的、 不受监督的表达方法。