The current autotuning approaches for quantum dot (QD) devices, while showing some success, lack an assessment of data reliability. This leads to unexpected failures when noisy or otherwise low-quality data is processed by an autonomous system. In this work, we propose a framework for robust autotuning of QD devices that combines a machine learning (ML) state classifier with a data quality control module. The data quality control module acts as a "gatekeeper" system, ensuring that only reliable data are processed by the state classifier. Lower data quality results in either device recalibration or termination. To train both ML systems, we enhance the QD simulation by incorporating synthetic noise typical of QD experiments. We confirm that the inclusion of synthetic noise in the training of the state classifier significantly improves the performance, resulting in an accuracy of 95.0(9) % when tested on experimental data. We then validate the functionality of the data quality control module by showing that the state classifier performance deteriorates with decreasing data quality, as expected. Our results establish a robust and flexible ML framework for autonomous tuning of noisy QD devices.
翻译:目前量子点(QD)装置的自动调控方法虽然取得了一定的成功,但缺乏对数据可靠性的评估。这导致在由自主系统处理噪音或其他低质量数据时出现意外故障。 在这项工作中,我们提议了一个对QD装置进行稳健的自动调控的框架,将机器学习(ML)状态分类器与数据质量控制模块结合起来。数据质量控制模块起到“看门人”的作用,确保国家分类器只处理可靠的数据。在设备调整或终止时,数据质量都较低。为了对 ML系统进行培训,我们通过将QD实验典型的合成噪音纳入到培训中来增强QD模拟。我们确认,将合成噪音纳入州分类器的培训将大大提高性能,从而在测试实验数据时达到95.0(9)%的准确性。我们随后验证数据质量控制模块的功能,显示国家分类器性能随着数据质量下降而恶化。我们的成果为自动调整音响QD装置的自动调压而建立了坚固和灵活的 ML框架。