Although vanilla Convolutional Neural Network (CNN) based detectors can achieve satisfactory performance on fake face detection, we observe that the detectors tend to seek forgeries on a limited region of face, which reveals that the detectors is short of understanding of forgery. Therefore, we propose an attention-based data augmentation framework to guide detector refine and enlarge its attention. Specifically, our method tracks and occludes the Top-N sensitive facial regions, encouraging the detector to mine deeper into the regions ignored before for more representative forgery. Especially, our method is simple-to-use and can be easily integrated with various CNN models. Extensive experiments show that the detector trained with our method is capable to separately point out the representative forgery of fake faces generated by different manipulation techniques, and our method enables a vanilla CNN-based detector to achieve state-of-the-art performance without structure modification.
翻译:虽然基于香草革命神经网络(CNN)的探测器在假面部检测上能够取得令人满意的效果,但我们注意到,探测器往往在有限的表面区域寻找伪造,这表明探测器缺乏对伪造的理解。因此,我们建议建立一个基于关注的数据增强框架,以引导探测器完善和扩大其注意力。具体地说,我们的方法跟踪并渗透到顶层-N敏感面部区域,鼓励探测器深入地下埋设地雷,在以前被忽略的地区进行更具有代表性的伪造。特别是,我们的方法简单易用,可以很容易地与各种CNN模型结合。广泛的实验表明,经过我们方法培训的探测器能够单独指出不同操作技术产生的假面的代名伪造,而我们的方法使香草CNN探测器能够在不改变结构的情况下实现最先进的性能。