The decomposition-based multi-objective evolutionary algorithm (MOEA/D) transforms a multi-objective optimization problem (MOP) into a set of single-objective subproblems for collaborative optimization. Mismatches between subproblems and solutions can lead to severe performance degradation of MOEA/D. Most existing mismatch coping strategies only work when the $L_{\infty}$ scalarization is used. A mismatch coping strategy that can use any $L_{p}$ scalarization, even when facing MOPs with non-convex Pareto fronts, is of great significance for MOEA/D. This paper uses the global replacement (GR) as the backbone. We analyze how GR can no longer avoid mismatches when $L_{\infty}$ is replaced by another $L_{p}$ with $p\in [1,\infty)$, and find that the $L_p$-based ($1\leq p<\infty$) subproblems having inconsistently large preference regions. When $p$ is set to a small value, some middle subproblems have very small preference regions so that their direction vectors cannot pass through their corresponding preference regions. Therefore, we propose a generalized $L_p$ (G$L_p$) scalarization to ensure that the subproblem's direction vector passes through its preference region. Our theoretical analysis shows that GR can always avoid mismatches when using the G$L_p$ scalarization for any $p\geq 1$. The experimental studies on various MOPs conform to the theoretical analysis.
翻译:基于分解的多目标进化算法(MOEA/D)将多目标优化问题(MOW)转化为一组用于协作优化的单一目标子问题。子问题和解决方案之间的误差可能导致MOEA/D的性能严重退化。 多数现有的不匹配应对策略只有在使用$L ⁇ infty}$的缩放时才会起作用。 一种可以使用任何以美元为基的平方($= ⁇ p}美元为基)的定量化的不匹配应对策略, 即便在非conex Pareto战线下, 多目标优化问题(MOEA/D)也具有重大意义。 本文使用全球替换(G)作为主干线。 当 $L\infty} 被另外的$( 1,\\ infty) 美元替换时, 当以美元为基价为基价的亚质化区域时, 当将美元为数值设定为基价的离位值时, 某些Gral_ 将无法再避免不匹配不匹配。 当我们通过直位区域时, 当我们通过直流化的Gralalalal_ralbleglegeleval_qm ad ad ad ad ad ad ad ad ad adds sralgragradudes s